Additive Functionals for Discrete-time Markov Chains with Applications to Birth–death Processes
نویسندگان
چکیده
In this paper we are interested in bounding or calculating the additive functionals of the first return time on a set for discrete-time Markov chains on a countable state space, which is motivated by investigating ergodic theory and central limit theorems. To do so, we introduce the theory of the minimal nonnegative solution. This theory combined with some other techniques is proved useful for investigating the additive functionals. This method is used to study the functionals for discrete-time birth–death processes, and the polynomial convergence and a central limit theorem are derived.
منابع مشابه
Additive Functionals of Infinite-variance Moving Averages
We consider the asymptotic behavior of additive functionals of linear processes with infinite variance innovations. Applying the central limit theory for Markov chains, we establish asymptotic normality for short-range dependent processes. A non-central limit theorem is obtained when the processes are long-range dependent and the innovations are in the domain of attraction of stable laws.
متن کاملBirth-death processes
Integral functionals of Markov processes are widely used in stochastic modeling for applications in ecology, evolution, infectious disease epidemiology, and operations research. The integral of a stochastic process is often called the “cost” or “reward” accrued by the process. Many important stochastic counting models can be written as general birth-death processes (BDPs), which are continuous-...
متن کاملLimit theorems for stationary Markov processes with L2-spectral gap
Let (Xt, Yt)t∈T be a discrete or continuous-time Markov process with state space X × R where X is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. (Xt, Yt)t∈T is assumed to be a Markov additive process. In particular, this implies that the first component (Xt)t∈T is also a Markov process. Markov random walks or additive f...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کاملThe Law of the Iterated Logarithm for Additive Functionals of Markov Chains
In the paper, the law of the iterated logarithm for additive functionals of Markov chains is obtained under some weak conditions, which are weaker than the conditions of invariance principle of additive functionals of Markov chains in M. Maxwell and M. Woodroofe [7] (2000). The main technique is the martingale argument and the theory of fractional coboundaries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011